Qualifying Exam Real Analysis August 2019

Throughout this exam, $\mathfrak{m} = \mathfrak{m}_n$ denotes Lebesgue measure in \mathbb{R}^n . The subindex *n* is often omitted. Also, A^c denotes the complement of the set *A*.

- (1) Let $F : \mathbb{R} \to \mathbb{R}$ be nondecreasing. It is well-known that F is continuous except for countably many jump discontinuities, but one can say more. Indeed, prove that F is differentiable **m**-a.e. (Hint: it could be helpful to first consider the case when F is right-continuous, so that you can use "abstract" theorems on measures.)
- (2) Let μ be a finite measure on (X, \mathcal{A}) and f, and f_1, f_2, \dots be real-valued \mathcal{A} -measurable functions on X. Show that $\{f_n\}$ converges to f in measure if and only if each subsequence of $\{f_n\}$ has a further subsequence that converges to f almost everywhere.
- (3) Let $1 . Suppose that <math>\{f_n\}_{n \ge 1}$ is a sequence of functions on [0, 1] such that

$$\|f_n\|_{L^p(\mathfrak{m})} \le 1, \qquad n \ge 1.$$

Let f be an integrable function on [0, 1] such that

$$\lim_{n\to\infty}\int_0^1 f_n h\ d\mathfrak{m} = \int_0^1 f h\ d\mathfrak{m} \ ,$$

for every $h \in L^{\infty}(\mathfrak{m})$. Prove that $f \in L^{p}(\mathfrak{m})$.

- (4) Let μ and ν be positive measures on (X, \mathcal{A}) such that for each positive ε there is a set $A \in \mathcal{A}$ that satisfies $\mu(A) < \varepsilon$ and $\nu(A^c) < \varepsilon$. Show that $\mu \perp \nu$.
- (5) If $1 \leq p < \infty$, prove that translation is continuous in the $L^p(\mathbb{R}^n)$ norm, i.e. that if $f \in L^p(\mathbb{R}^n)$, then $\lim_{h\to 0} || f(\cdot h) f(\cdot) ||_{L^p(\mathbb{R}^n)} = 0$. Give a counterexample for this statement if $p = \infty$.